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1 Instructor: Daniel Llamocca 

Laboratory 5 
(Due date: November 20th) 

 

OBJECTIVES 
 Design an AXI4-Full Interface for a custom VHDL peripheral. 
 Integrate the custom VHDL peripheral in an embedded system in Vivado. 
 Create a software application in SDK that can handle the custom peripheral. 
 

VHDL CODING 

 Refer to the Tutorial: VHDL for FPGAs for a tutorial and a list of examples. 

 Refer to the Tutorial: Embedded System Design for Zynq SoC for information on how to create AXI interfaces for custom 

peripherals as well as embedded system integration in Vivado. 
 

FIRST ACTIVITY (100/100) 
 Using Vivado, create an AXI4-Full Interface for the iterative CIRCULAR CORDIC that you developed in Lab 3: Use the same 

format ([16 14]) for the inputs and outputs.  

 AXI4-Full Interface: You can use the iFIFO/oFIFO approach used for the Pixel Processor (See Notes – Unit 5): 
 FSM @ S_AXI_ACLK: It is the same as the one used for the Pixel Processor. 
 FSM @ CLK_FX: This FSM controls the Input and Output interfaces to the FIFOs as well as FIFOs’ signals. 
 Input and Output Interfaces: Since AXI bus size is 32 bits wide, we need to properly route data in and out of the CORDIC 

hardware that requires more than 32 bits. This circuit runs @ CLK_FX. 
 Draw a schematic of the circuit that runs at FSM @ CLK_FX (Input/Output Interfaces to the FIFO and the FSM). Connect 

CLK_FX to S_AXI_CLK. 
 If you decide to use a different approach, provide a detailed schematic of your AXI4-Full interface. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Once you have your custom AXI4-Full Peripheral, integrate it into an embedded system using the Block-Based Design 

approach in Vivado. 
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 SDK Software application: Test it for the following cases by writing all the input data (one right after the other), and then 
retrieving all the output data. Print the results (via UART). 
 Rotation Mode: 𝑥0 = 0, 𝑦0 = 1 𝐴𝑛⁄ , 𝑧0 = 𝜋 6⁄ . 

 Rotation Mode: 𝑥0 = 0, 𝑦0 = 1 𝐴𝑛⁄ , 𝑧0 = 𝜋 4⁄ . 

 Rotation Mode: 𝑥0 = 0, 𝑦0 = 1 𝐴𝑛⁄ , 𝑧0 = − 𝜋 3⁄ . 

 Rotation Mode: 𝑥0 = 0, 𝑦0 = 1 𝐴𝑛⁄ , 𝑧0 = − 𝜋 7⁄ . 
 Vectoring Mode: 𝑥0 = 𝑦0 = 0.8, 𝑧0 = 0 

 Vectoring Mode: 𝑥0 = 𝑦0 = 0.5, 𝑧0 = 0 

 Vectoring Mode: 𝑥0 = 0.5, 𝑦0 = 1, 𝑧0 = 0 
 Vectoring Mode: 𝑥0 = −0.4, 𝑦0 = 1, 𝑧0 = 0 

 
 Download the hardware bitstream on the ZYNQ SoC. 
 Launch your software application on the Zynq PS. The program should display the output results on the Terminal. 

Demonstrate this to your instructor. 
 
 Submit (as a .zip file) the generated files: VHDL code, .c files to Moodle (an assignment will be created). DO NOT submit 

the whole Vivado Project. 
 
 

Instructor signature: _____________________________  Date: __________________________ 


