ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-495/595: Special Topics — Reconfigurable Computing Fall 2015

Laboratory 5

(Due date: November 20t)

OBJECTIVES

v' Design an AXI4-Full Interface for a custom VHDL peripheral.

v Integrate the custom VHDL peripheral in an embedded system in Vivado.

v Create a software application in SDK that can handle the custom peripheral.

VHDL CODING
v Refer to the Tutorial: VHDL for FPGAs for a tutorial and a list of examples.
v Refer to the Tutorial: Embedded System Design for Zyng SoC for information on how to create AXI interfaces for custom

peripherals as well as embedded system integration in Vivado.

FIRST AcTivITY (100/100)

Using Vivado, create an AXI4-Full Interface for the iterative CIRCULAR CORDIC that you developed in Lab 3: Use the same

format ([16 14]) for the inputs and outputs.

AXI4-Full Interface: You can use the iFIFO/oFIFO approach used for the Pixel Processor (See Notes — Unit 5):

v FSM @ S_AXI_ACLK: It is the same as the one used for the Pixel Processor.

v' FSM @ CLK_FX: This FSM controls the Input and Output interfaces to the FIFOs as well as FIFOs’ signals.

v Input and Output Interfaces: Since AXI bus size is 32 bits wide, we need to properly route data in and out of the CORDIC
hardware that requires more than 32 bits. This circuit runs @ CLK_FX.

Draw a schematic of the circuit that runs at FSM @ CLK_FX (Input/Output Interfaces to the FIFO and the FSM). Connect

CLK_FX to S_AXI_CLK.

If you decide to use a different approach, provide a detailed schematic of your AXI4-Full interface.

S_AXI_AWID - j S_AXI_ARID
S_AXI_AWADDR 6 _ "6 S_AXI_ARADDR
S_AXIAWLEN g8 8 S_AXLARLEN
S_AXI_AWSIZE 3 "3 S_AXL_ARSIZE
S_AXI_AWBURST 2~ 5 S_AXI_ARBURST
S_AXI_AWVALID ~ 7 S_AXI_ARVALID
S_AXI_AWREADY © S_AXI_ARREADY
< IFIFO 512x32 CIRCULAR CORDIC OFIFO 512x32 >
FWFT NN rera SN P FWFT
S_AXI_WDATA 32 &l | . 16, | & 32 S_AXI_RDATA
>——>| DI DO[=>| £ Yin Yout 552 DI DO >
S_AXI_WSTRB 4, | | —>|wren rden =R P 164]5 wren rden|< S_AXI_RID
> a7 zin Zout =7=» o >
S_AXI_WLAST = 2 e |2 mode S st B 2, S_AXI_RRESP
> = g' > rst s done — - g' >
SAXWVALID L SE L SE S_AXI_RLAST _
S_AXI_WREADY — S_AXI_RVALID
(l < S_AXI_RREADY
'S_AXI_BID oM
'S_AXI_BRESP 2 full —
S_AXI_BVALID) R e
"S_AXI_BREADY FSM
S_AXI_ACLK |— —’T

— mem_wrfen
L mem_rden «—— axi_arv_arr_flag

axi_rvalid

CLKFX

Once you have your custom AXI4-Full Peripheral, integrate it into an embedded system using the Block-Based Design
approach in Vivado.

1 Instructor: Daniel Llamocca

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
http://www.secs.oakland.edu/~llamocca/EmbSysZynq.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-495/595: Special Topics — Reconfigurable Computing Fall 2015

= SDK Software application: Test it for the following cases by writing all the input data (one right after the other), and then
retrieving all the output data. Print the results (via UART).

Rotation Mode: x, = 0,y, = 1/4,,,2, = /6.

Rotation Mode: x, = 0,y, = 1/4,,,2, = /4.

Rotation Mode: x, = 0,y, = 1/4,,,20 = — /3.

Rotation Mode: x, = 0,y, = 1/4,,,20 = — /7.

Vectoring Mode: x, =y, = 0.8,z, =0

Vectoring Mode: x, = vy, = 0.5,z =0

Vectoring Mode: x, = 0.5,y, =1,z =0

Vectoring Mode: xq = —0.4,y, =1,z =0

AN NI N N N NN

= Download the hardware bitstream on the ZYNQ SoC.
= Launch your software application on the Zynq PS. The program should display the output results on the Terminal.
Demonstrate this to your instructor.

= Submit (as a .zip file) the generated files: VHDL code, .c files to Moodle (an assignment will be created). DO NOT submit
the whole Vivado Project.

Instructor signature: Date:

2 Instructor: Daniel Llamocca

