
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-495/595: Special Topics – Reconfigurable Computing Fall 2015

1 Instructor: Daniel Llamocca

Laboratory 5
(Due date: November 20th)

OBJECTIVES
 Design an AXI4-Full Interface for a custom VHDL peripheral.
 Integrate the custom VHDL peripheral in an embedded system in Vivado.
 Create a software application in SDK that can handle the custom peripheral.

VHDL CODING

 Refer to the Tutorial: VHDL for FPGAs for a tutorial and a list of examples.

 Refer to the Tutorial: Embedded System Design for Zynq SoC for information on how to create AXI interfaces for custom

peripherals as well as embedded system integration in Vivado.

FIRST ACTIVITY (100/100)
 Using Vivado, create an AXI4-Full Interface for the iterative CIRCULAR CORDIC that you developed in Lab 3: Use the same

format ([16 14]) for the inputs and outputs.

 AXI4-Full Interface: You can use the iFIFO/oFIFO approach used for the Pixel Processor (See Notes – Unit 5):
 FSM @ S_AXI_ACLK: It is the same as the one used for the Pixel Processor.
 FSM @ CLK_FX: This FSM controls the Input and Output interfaces to the FIFOs as well as FIFOs’ signals.
 Input and Output Interfaces: Since AXI bus size is 32 bits wide, we need to properly route data in and out of the CORDIC

hardware that requires more than 32 bits. This circuit runs @ CLK_FX.
 Draw a schematic of the circuit that runs at FSM @ CLK_FX (Input/Output Interfaces to the FIFO and the FSM). Connect

CLK_FX to S_AXI_CLK.
 If you decide to use a different approach, provide a detailed schematic of your AXI4-Full interface.

 Once you have your custom AXI4-Full Peripheral, integrate it into an embedded system using the Block-Based Design

approach in Vivado.

S_AXI_AWID

S_AXI_AWADDR

S_AXI_AWLEN

S_AXI_AWSIZE

S_AXI_AWBURST

S_AXI_AWVALID

S_AXI_AWREADY

S_AXI_WDATA

S_AXI_WSTRB

S_AXI_WLAST

S_AXI_WVALID

S_AXI_WREADY

S_AXI_BID

S_AXI_BRESP

S_AXI_BVALID

S_AXI_BREADY

6

axi_arv_arr_flag

32

4

S_AXI_ARID

S_AXI_ARADDR

S_AXI_ARLEN

S_AXI_ARSIZE

S_AXI_ARBURST

S_AXI_ARVALID

S_AXI_ARREADY

S_AXI_RDATA

S_AXI_RRESP

S_AXI_RLAST

S_AXI_RVALID

S_AXI_RREADY

S_AXI_RID

8

3

2

2

6

8

3

2

2

32

mem_wren
mem_rden a

x
i_

rv
a
lid

iFIFO

FWFT

DO
rden

DI
wren

fu
ll

e
m

p
ty

512x32

rst

FSM

oFIFO

FWFT

DO
rden

DI
wren

fu
ll

e
m

p
ty

512x32

rst

FSM

S_AXI_ACLK

CLKFX

oempty

orden

iempty

ifull

CIRCULAR CORDIC

s done

In
pu

t I
nt

er
fa

ce

rst

O
ut

pu
t I

nt
er

fa
ce

16 Xin

16

16

Yin

Zin

mode

16

16

16

Xout

Yout

Zout

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
http://www.secs.oakland.edu/~llamocca/EmbSysZynq.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-495/595: Special Topics – Reconfigurable Computing Fall 2015

2 Instructor: Daniel Llamocca

 SDK Software application: Test it for the following cases by writing all the input data (one right after the other), and then
retrieving all the output data. Print the results (via UART).
 Rotation Mode: 𝑥0 = 0, 𝑦0 = 1 𝐴𝑛⁄ , 𝑧0 = 𝜋 6⁄ .

 Rotation Mode: 𝑥0 = 0, 𝑦0 = 1 𝐴𝑛⁄ , 𝑧0 = 𝜋 4⁄ .

 Rotation Mode: 𝑥0 = 0, 𝑦0 = 1 𝐴𝑛⁄ , 𝑧0 = − 𝜋 3⁄ .

 Rotation Mode: 𝑥0 = 0, 𝑦0 = 1 𝐴𝑛⁄ , 𝑧0 = − 𝜋 7⁄ .
 Vectoring Mode: 𝑥0 = 𝑦0 = 0.8, 𝑧0 = 0

 Vectoring Mode: 𝑥0 = 𝑦0 = 0.5, 𝑧0 = 0

 Vectoring Mode: 𝑥0 = 0.5, 𝑦0 = 1, 𝑧0 = 0
 Vectoring Mode: 𝑥0 = −0.4, 𝑦0 = 1, 𝑧0 = 0

 Download the hardware bitstream on the ZYNQ SoC.
 Launch your software application on the Zynq PS. The program should display the output results on the Terminal.

Demonstrate this to your instructor.

 Submit (as a .zip file) the generated files: VHDL code, .c files to Moodle (an assignment will be created). DO NOT submit

the whole Vivado Project.

Instructor signature: _____________________________ Date: __________________________

